Operations on Maps

Mircea V. Diudea

Faculty of Chemistry and Chemical Engineering
Babes-Bolyai University 400028 Cluj, ROMANIA diudea@chem.ubbcluj.ro

Contents

Cage Building by Map Operactions

1. Dual
2」 Medjaj
3., Truncation
4) Polygonal P_{s} Capping
5, Leapfrog
6. Quadrupling
7. Capra

Operations on Maps

$\checkmark A$ map M is a combinatorial representation of a closed sufface, 1
, Several operations on a map allow its transformation into new maps (convex polyhedra).
J Plationic polyhedra: Tetrahedron, Cube, Octahedron, Dodecahedron and I cosahedron

1. Pisanski, T.; Randić, M. Bridges between Geometry and Graph Theory. In: Geometry at Work, M. A. A. Notes, 2000, 53, 174-194

Itلer Theorem on Polyhedra

Ary map Mand its transforms by map operations will obey the Euler theorem ${ }^{1}$

$$
\begin{aligned}
& \left.y-e+f^{\prime \prime}=x=2(1-g)\right) \\
& x=\text { Euler's characteristic } \\
& v=\text { number of vertices, } \\
& e=\text { number of edges, } \\
& f=\text { number of faces, } \\
& g=\text { genus } ;(g=0 \text { for a sphere; } 1 \text { for a torus }) .
\end{aligned}
$$

1. L. Euler, Elementa doctrinae solidorum, Novi Comment. Acad. Sci. I. Petropolitanae 1758, 4, 109-140.
－！」 リリゴリ
，DIEIFEETion Du of a map：put a point in the center of each face of M ．Join two points if their corresponding faces share a common edge．The transformed map is called the（Poincaré）dua／Du（ $M /$ ）．
，The vertices of $D u(M)$ represent faces in M and vice－ verse．The following relations exist：

$$
\begin{aligned}
\operatorname{DW}(M): \quad \mathrm{V} & =f_{0} \\
e & =e_{0} \\
f & =v_{0}
\end{aligned}
$$

－Dual of the dual recovers the map itself：

$$
\operatorname{Du}(\operatorname{Du}(M))=M
$$

DHEJ, examples

> Du(Tetrahedron) = Tetrahedron
> Du(Cube) $=$ Octahedron

Plationje Soljols

「リラリ，examples

> Du(Dodecahedron) = Icosahedron

Plaionic soljols

Dual of a triangulation is always a cubic net．

Escul=gel projection

\lrcorner A projection of a sphere-like polyhedron on a plane is called a Schlegel diagram.

In a polyhedron, the center of diagram is taken either a vertex, the center of an edge or the center of a face

Cube and its dual，Octahedron

J̌inlegel diagrams

Cり！りま

2」 」リノEの㞓」

」
The new vertices are the midpoints of the original edges．Join two vertices if the original edges span an angle（and are consecutive）．
－Me（M）is a 4－valent graph

$$
\operatorname{Me}(M)=\operatorname{Me}(\operatorname{Du}(M))
$$

The transformed parameters are：

$$
\begin{aligned}
M e(M):- & v=e_{0} \\
e & =2 e_{0} \\
f & =f_{0}+v_{0}
\end{aligned}
$$

－Meoperation rotates parent s－gonal faces by π / s ．

$1 \downarrow=c \int j=1 j$ example

シュ - Лflfictuon

 neighborhood of each vertex by a plane close to the vertex, such that it intersects each edge incident to the vertex.

- Trusication is related to the medial, with the main difiference that each old edge will generate three new edges in the truncated map. The transformed parameters are:

$$
\text { Of(M): } \quad \begin{aligned}
v & =d_{0} v_{0} \\
e & =3 e_{0} \\
f & =f_{0}+v_{0}
\end{aligned}
$$

〔suscaions example

Tऽ

-ऽujuction, example

Icosahedion
$\operatorname{Tr}(\operatorname{Icosan}$ nedron $)=\mathrm{C}_{60}$

4u Polygonal P_{s} Capping

Calp,ping $P_{5}(s=3,4,5)$ of a face is achieved as follows: ${ }^{1}$

- Add al new vertex in the center of the face. Put $s-3$ points on the bouridary edges.
- Connect the central point with one vertex (the end points included) on each edge.
, The parent face is thus covered by: trigons ($s=3$),
tetragons $(s=4)$
pentagons $(s=5)$.
- The P_{3} operation is also called stellation or (centered) triangulation.
- When all the faces of a map are thus operated, it is referred to as an omnicapping P_{s} operation.

1. M. V. Diudea, Covering forms in nanostructures, Forma 2004 (submitted)

polygonal P_{5} Capping

The resulting map shows the relations:

$$
\left.\left.\Re_{5}(\lrcorner \mu\right)\right\lrcorner \quad \begin{aligned}
v & =v_{0}+(s-3) e_{0}+f_{0} \\
e & =s e_{0} ; e=s_{0} f_{0}+(s-2) e_{0}=s e_{0} \\
f & =s_{0} f_{0}
\end{aligned}
$$

Maps transformed as above form shal palirs :

$$
\begin{aligned}
& \operatorname{Du}\left(P_{3}(M)\right)=\operatorname{Le}(M) \\
& \operatorname{Du}\left(P_{4}(M)\right)=\operatorname{Me}(\operatorname{Me}(M)) \\
& \operatorname{Du}\left(P_{5}(M)\right)=\operatorname{Sn}(M)
\end{aligned}
$$

Vertex rrultiplication ratio by this dualization is always:

$$
v(D u) / v_{0}=d_{0}
$$

Since:

$$
v(D u)=f\left(P_{s}(M)\right)=s_{0} f_{0}=d_{0} v_{0}
$$

$$
\mathrm{F}_{3} \text { Capping }=\text { Triangulation }
$$

P_{3} (Cし, ε)

P_{3} (Dodecantedron)

P, Ca,p,ping $=$ Tetrangulation

1. Catalan objects (i.e., duals of the Archimedean solids).
2. B. de La Vaissière, P. W. Fowler, and M. Deza, J. Chem. Inf. Comput. Sci., 2001, 41, 376-386.

F_{5} Capping $=$ Pentangulation

1. For other operation names see www.georgehart.com $/ v i r t u a l-p o l y h e d r a ~$ \conway_notation.htm|

Enju $\operatorname{Sin}(\mu \mu)$

$$
\left.S_{\mu} \mu\left(\mu^{\prime} \mu\right)=\operatorname{Dg}(M /(M)(M /))\right)=\operatorname{Du}\left(P_{5}(M)\right)
$$

where $D g$ is the inscribing diagonals in the tetragons resulted by Me (Me (M)). ${ }^{1}$

The true dual of the snub is the $P_{5}(M)$ transform. ${ }^{2}$

1. T. Pisanski and M. Randić, in Geometry at Work, M. A. A. Notes, 2000, 53, 174-194.
2. M. V. Diudea, Forma, 2004 (submitted).

Similar to the medial operation,

$$
\sin \left(\mu_{\mu} \mu\right)=\sin \left(D_{u}(\mu)\right) \text {. }
$$

Jf case $\mu / \mu_{=} J$, the snub $\operatorname{Sn}(M)=I$.
The transformed parameters are:
$\sin (M)=$

$$
\begin{aligned}
& v=s_{0} f_{0}=d_{0} v_{0} \\
& e=5 e_{0} \\
& f=v_{0}+2 e_{0}+f_{0}
\end{aligned}
$$

İf 1 ($\mu ر)$, examples

Delete the edges of the triangle joining any three parent faces (the blue Triangle - left image) to obtain² $L e(M)$

$5 n!(D)$

$$
\underline{1}(\text { I })^{2}=C_{60}
$$

1. Archimedeans, B. de La Vaissière, P. W. Fowler, and M. Deza, J. Chem. Inf. Comput. Sci, 2001, 41, 376-386.
2. M. V. Diudea, Forma, 2004 (submitted).

- LEE, Mifog Le
is a composite operation that can be achieved in two ways:
, $\quad L E(\mu / J)=\operatorname{Du}\left(P_{3}(M)\right)=\operatorname{Tr}(\operatorname{Du}(M))$
$L \in(\mu)$ is always a trivalent graph.

Within the leapfrog process, the dualization is made on the omnicapped map. Le rotates the parent s-gonal faces by π / s.

1. P. W. Fowler, How unusual is C_{60} ? Magic numbers for carbon clusters. Chem. Phys. Lett. 1986, 131, 444-450.

レキ, examples

Square face

$1 シ$ examples

Pentagonal face

$\perp \ddots$, examples

Bounding polygon size: $\quad s=2 d /$

(a)

(b)

Theorem on Le (M)

If M Is a d_{0}-regular graph, then:

- The number of vertices in Le (M) is d_{0} times larger than in the original map M, irrespective of the tessellation type.

Demonstration: observe that for each vertex v_{0} of $M_{\text {, }}$ do new vertices result in $L e(M)$, thus:

$$
\mathrm{v} / \mathrm{v}_{0}=\mathrm{d}_{0} \mathrm{v}_{0} / \mathrm{v}_{0}=\mathrm{d}_{0}
$$

ノヲ $\doteq コ ノ)$ ，（continued）

Relations in the transformed map are：

$$
\begin{aligned}
L e(M): v & =d_{0} v_{0}=2 \theta_{0} \\
e & =3 \theta_{0} \\
f & =f_{0}+v_{0}
\end{aligned}
$$

Examples：
Le（Dodecahedron）$=\mathrm{C}_{60}$
If（I cosahedron）$=\mathrm{C}_{60}$
Icosahedron＝Du（Dodecahedron）．
$\stackrel{L}{ }$, examples

Scinl=gel version of $\operatorname{Le}\left(\mu^{1} / /\right)$

1. J. R. Dias, From benzenoid hydrocarbons to fullerene carbons. MATCH,Commun. Math. Chem. Comput. , 1996, 33, 57-85.

Eschajgel version of $L e(\mu / J)$

circumscribe

Le(hexahedron)

Ec'sj $=g \in J$ version of $L \in(\mu /)$ examples

Cuscunseribing

1. J. R. Dias, From benzenoid hydrocarbons to fullerene carbons. Commun. Math. Chem. Comput. (MATCH), 1996, 33, 57-85.

Cisctusnscribing (continued)

C_{30}

Covering C_{60} by 6 naphithalene units

fiJito-lealpirog

$$
P_{3}\left(M_{1}\right)=D u\left(L e\left(M_{1}\right)\right) ; \quad M_{0}=P_{-3}\left(M_{1}\right)
$$

Cut all vertices with degree lower than the maximal one, to get M_{0}

$$
\text { Du }\left(\operatorname{Le}\left(C_{20}\right) ; N=32 \quad D ; N=20\right.
$$

fiJito-LEalpirog

$$
P_{3}\left(M_{1}\right)=D u\left(L e\left(M_{1}\right)\right) ; \quad M_{0}=P_{-3}\left(M_{1}\right)
$$

Cut all veritices with degree lower than the maximal one, to get M_{0}

fiJito-leapirog

$$
P_{3}\left(M_{1}\right)=D u\left(L e\left(M_{1}\right)\right) ; \quad M_{0}=P_{-3}\left(M_{1}\right)
$$

Cif ald vertices with degree lower than the maximal one, to get Mo

$$
\operatorname{Du}(\operatorname{Le}(M / M)(C)) \times C_{4}, N=20 \quad \text { Cubeoctahedron }=M / M e\left(C^{\prime}\right) ; N=12
$$

İ ? Italstolinge Q (M)

- Chansifering = Edge Truncation

$$
\text { ,Q } Q(\mu /)=E\left(\pi \Gamma_{P 3}\left(P_{3}(M)\right)\right)
$$

Qoperation leaves insinjanssec the initial orientation of the polygonal faces.

? (M), examples

Square face

$?(M)=E\left(T_{\Gamma_{P 3}}\left(P_{3}(M)\right)\right)$, examples

Pentagonal face

$P_{3}(M)$

$\boldsymbol{T r}_{P_{3}}$

Q

Theorem on $Q(M)$

- Thie vertex multiplication ratio in $Q(M)$ is $s_{0}+1$ irrespective of the tiling type of M_{1}
, Demonstration: observe that for each vertex v_{0} in M resultis d_{0} new vertices in $Q(M)$ and the old vertices are preserved.

Thus: $\quad v=\omega_{0} v_{0}+v_{0}$

$$
v / v_{0}=\left(d_{0}+1\right) v_{0} / v_{0}=d_{0}+1
$$

? ($/ \mu)$ (continued)

-The transformed parameters are:

$$
\begin{aligned}
\int(\mu \mu)=v & =\left(d_{0}+1\right) v_{0} \\
e & =4 e_{0} \\
f & =f_{0}+e_{0}
\end{aligned}
$$

In a 4 -valent map, Q leads to a non-regular graph (3- and 4-valent vertices).

? $\left(\rho^{\prime}\right)$, examples

$$
Q\left(\mathrm{C}_{24}\right) \text { (non-optimized) }
$$

$$
Q\left(\mathrm{C}_{24}\right) \text { (optimized) }
$$

Scisjegel version of $Q(M)$

Q (Dodecahedron)

$\mathrm{C}_{80 \mathrm{u}}$

Platonic and Archimedean polyhedra (derived from Tetrahedron)

Symbol Polyhedron
Formula

1	T	Tetrahedron	
2	O	Octahedron	Me(T)
3	C	Cube (hexahedron)	$\operatorname{Du}(0)=\operatorname{Du}(\mathrm{Me}(\mathrm{T}))$
4	I	Icosahedron	Sn(T)
5	D	Dodecahedron	$D u(I)=\operatorname{Du}(\operatorname{Sn}(\mathrm{T}))$
1	TT	Truncated tetrahedron	$\operatorname{Tr}(T)$
2	TO	Truncated octahedron	$\operatorname{Tr}(O)=\operatorname{Tr}(\operatorname{Me}(T))$
3	TC	Truncated cube	$\operatorname{Tr}(C)=\operatorname{Tr}(\operatorname{Du}(\operatorname{Me}(T)))$
4	TI	Truncated icosahedron	$\operatorname{Tr}(\mathrm{I})=\operatorname{Tr}(\operatorname{Sn}(\mathrm{T}) \mathrm{)}$
5	TD	Truncated dodecahedron	$\operatorname{Tr}(\mathrm{D})=\operatorname{Tr}(\operatorname{Du}(\operatorname{Sn}(T)))$
6	CO	Cuboctahedron	$\operatorname{Me}(C)=\operatorname{Me}(O)=\operatorname{Me}(\operatorname{Me}(T))$
7	ID	Icosidodecahedron	$\operatorname{Me}(\mathrm{I})=\operatorname{Me}(\mathrm{D})=\operatorname{Me}(\operatorname{Sn}(T))$
8	RCO	Rhombicuboctahedron	$\operatorname{Me}(\mathrm{CO})=\operatorname{Me}\left(\operatorname{Me}(\mathrm{C}) \mathrm{)}=\operatorname{Du}\left(\mathrm{P}_{4}(\mathrm{C})\right.\right.$)
9	RID	Rhombicosidodecahedron	$\operatorname{Me}(I D)=\operatorname{Me}\left(\operatorname{Me}(\mathrm{I})=\operatorname{Du}\left(\mathrm{P}_{4}(\mathrm{I})\right.\right.$)
10	TCO	Truncated cuboctahedron	$\operatorname{Tr}(\mathrm{CO})=\operatorname{Tr}(\mathrm{Me}(\mathrm{Me}(\mathrm{T}) \mathrm{)})$
11	TID	Truncated icosidodecahedron	$\operatorname{Tr}(\mathrm{ID})=\operatorname{Tr}(\mathrm{Me}(\operatorname{Sn}(\mathrm{T}) \mathrm{)})$
12	SC	Snub cube	$\operatorname{Sn}(C)=\operatorname{Du}\left(P_{5}(C)\right)=\operatorname{Du}(O p(C a(C)))$
13	SD	Snub dodecahedron	$\operatorname{Sn}(\mathrm{D})=\operatorname{Du}\left(P_{5}(\mathrm{D})\right)=\operatorname{Du}(\mathrm{Op}(\mathrm{Ca}(\mathrm{D})))$

