Operations on Maps

Mircea V. Diudea

Faculty of Chemistry and Chemical Engineering Babes-Bolyai University 400028 Cluj, ROMANIA diudea@chem.ubbcluj.ro

Contents

Cage Building by Map Operations

- 1. Dual
- 2. Medial
- **3.** Truncation
- 4. Polygonal P_s Capping
- 5. Leapfrog
- **6**. Quadrupling
- 7. Capra

Operations on Maps

- A map *M* is a combinatorial representation of a closed surface.¹
- Several operations on a map allow its transformation into new maps (convex polyhedra).
- Platonic polyhedra: Tetrahedron, Cube, Octahedron, Dodecahedron and Icosahedron
- 1. Pisanski, T.; Randić, M. Bridges between Geometry and Graph Theory. In: *Geometry at Work*, M. A. A. Notes, 2000, *53*, 174-194.

Euler Theorem on Polyhedra

Any map M and its transforms by map operations will obey the Euler theorem¹

 $\nu - e + f = \chi = 2(1-g)$

- χ = Euler's characteristic v = number of vertices,
- e = number of edges,
- f = number of faces,
- g = genus; (g = 0 for a sphere; 1 for a torus).

1. L. Euler, Elementa doctrinae solidorum, *Novi Comment. Acad. Sci. I. Petropolitanae* **1758**, *4*, 109-140.

1. Dual

 Dualization Du of a map: put a point in the center of each face of M. Join two points if their corresponding faces share a common edge. The transformed map is called the (Poincaré) dual Du (M).

The vertices of *Du*(*M*) represent faces in *M* and *vice-versa*. The following relations exist:

• DU(M): $v = f_0$

 $e = e_0$ $f = v_0$

• Dual of the dual recovers the map itself: Du(Du(M)) = M

Dual, examples

Du(Tetrahedron) = Tetrahedron Du(Cube) = Octahedron

Platonic Solids

Dual, examples

Du(Dodecahedron) = lcosahedron

Platonic Solids

DodecahedronIcosahedronImage: Construction of the sector of the sector

Dual of a triangulation is always a cubic net.

Schlegel projection

 A projection of a sphere-like polyhedron on a plane is called a Schlegel diagram.

In a polyhedron, the center of diagram is taken either a vertex, the center of an edge or the center of a face

Cube and its dual, Octahedron

Schlegel diagrams

2. Medial

I/leclial I/le is achieved as follows:

The new vertices are the midpoints of the original edges. Join two vertices if the original edges span an angle (and are consecutive). Me(M) is a 4-valent graph Me(M) = Me(Du(M)). The transformed parameters are: Me(M): $v = e_0$ $e = 2e_0$ $f = f_0 + v_0$

• *Me* operation rotates parent *s* -gonal faces by π/s .

Medial; example

Subdivided Su 1(C)

Cubeoctahedron = *Me(C)*

3. Truncation

- Truncation *Tr* is acheved by cutting of the neighborhood of each vertex by a plane close to the vertex, such that it intersects each edge incident to the vertex.
- Truncation is related to the medial, with the main difference that each old edge will generate three new edges in the truncated map. The transformed parameters are:
- Tr(M): $v = d_0 v_0$ $e = 3e_0$ $f = f_0 + v_0$

Truncation, example

Tr (M) always generates a 3-valent map.

Tr (Octahedron)

3D Truncated Octahedron

Truncation, example

Icosahedron

 $Tr(Icosahedron) = C_{60}$

4. Polygonal P, Capping

- Capping P_s (s = 3, 4, 5) of a face is achieved as follows:¹
- Add a new vertex in the center of the face. Put *s* -3 points on the boundary edges.
- Connect the central point with one vertex (the end points included) on each edge.
- The parent face is thus covered by: trigons (s = 3),

trigons (s = 3), tetragons (s = 4) pentagons (s = 5).

• The P_3 operation is also called *stellation* or

(centered) triangulation.

When all the faces of a map are thus operated, it is referred to as an omnicapping P_s operation.

1. M. V. Diudea, Covering forms in nanostructures, *Forma* 2004 (submitted)

Polygonal P, Capping

The resulting map shows the relations:

$$P_{s}(M): \qquad v = v_{0} + (s-3)e_{0} + f_{0}$$

$$e = se_{0} \quad \vdots \quad e = s_{0}f_{0} + (s-2)e_{0} = se_{0}$$

$$f = s_{0}f_{0}$$
Maps transformed as above form *dual pairs*:
$$Du(P_{3}(M)) = Le(M)$$

$$Du(P_{4}(M)) = Me(Me(M))$$

$$Du(P_{5}(M)) = Sn(M)$$
Vertex multiplication ratio by this dualization is always:
$$v(Du) / v_{0} = d_{0}$$
Since:
$$v(Du) = f(P_{s}(M)) = s_{0}f_{0} = d_{0}v_{0}$$

P_3 Capping = Triangulation

P₄ Capping = Tetrangulation

 $P_4(Cube)^1$

Catalan objects (*i.e.*, duals of the Archimedean solids).
 B. de La Vaissière, P. W. Fowler, and M. Deza, *J. Chem. Inf. Comput. Sci.*, 2001, *41*, 376-386.

P_5 Capping = Pentangulation¹

 $P_5(Cube)$

$P_5(Dodecahedron)$

1. For other operation names see <u>www.georgehart.com\virtual-polyhedra</u> \conway_notation.html

Snub Sn (IVI)

 $Sn(M) = Dg(Me(Me(M))) = Du(P_5(M))$ where Dg is the inscribing diagonals in the tetragons resulted by Me(Me(M)).¹ The true dual of the snub is the $P_5(M)$ transform.²

T. Pisanski and M. Randić, in *Geometry at Work*, M. A. A. Notes, **2000**, *53*, 174-194.
 M. V. Diudea, Forma, 2004 (submitted).

Snub Sn (IV/), continued

Similar to the medial operation, Sn(M) = Sn(Du(M)).In case M = T, the snub Sn(M) = I. The transformed parameters are: Sn(M): $v = s_0 f_0 = d_0 v_0$ $e = 5 e_0$ $f = v_0 + 2e_0 + f_0$

Sri (///), examples

Delete the edges of the triangle joining any three parent faces (the blue Triangle – left image) to obtain² Le(M)

$$Le(D)^2 = C_{60}$$

 Archimedeans, B. de La Vaissière, P. W. Fowler, and M. Deza, *J. Chem. Inf. Comput. Sci.*, 2001, *41*, 376-386.
 M. V. Diudea, Forma, 2004 (submitted).

5. *Leapfrog*¹ = Tripling

Leapfrog Le

is a composite operation that can be achieved in two ways:

- $Le(M) = Du(P_3(M)) = Tr(Du(M))$
- Le(M) is always a trivalent graph.

• Within the leapfrog process, the dualization is made on the omnicapped map. *Le* rotates the parent *s*-gonal faces by π/s .

1. P. W. Fowler, How unusual is C₆₀? Magic numbers for carbon clusters. *Chem. Phys. Lett.* 1986, *131*, 444-450.

Le, examples

Bounding polygon size: $s = 2d_0$

Theorem on Le(M)

If *M* is a d_0 -regular graph, then:

 The number of vertices in Le (M) is d₀ times larger than in the original map M, irrespective of the tessellation type.

Demonstration: observe that for each vertex v_0 of M, <u> d_0 new vertices result in Le(M)</u>, thus:

 $v/v_0 = d_0 v_0 / v_0 = d_0$

Le(II), (continued)

Relations in the transformed map are:

Le(M): $v = d_0 v_0 = 2e_0$ $e = 3 e_0$ $f = f_0 + v_0$ Examples:

Le (Dodecahedron) = C_{60} Tr (Icosahedron) = C_{60}

Icosahedron = *Dy* (Dodecahedron).

Le, examples

 $Le(C_{24})$

 $Le(C_{30})$

Schlegel version¹ of *Le* (*I*//)

1. J. R. Dias, From benzenoid hydrocarbons to fullerene carbons. MATCH,Commun. Math. Chem. Comput., 1996, 33, 57-85.

Schlegel version of Le (M)

Schlegel version of *Le* (*I*//): examples

1. J. R. Dias, From benzenoid hydrocarbons to fullerene carbons. *Commun. Math. Chem. Comput. (MATCH*), 1996, 33, 57-85.

Circumscribing (continued)

$$P_3(M_1) = Du(Le(M_1)); \quad M_0 = P_{-3}(M_1)$$

Cut all vertices with degree lower than the maximal one, to get M_0

Le(Me(C); N = 48

6. Quadrupling Q(M)

Chamfering = Edge Truncation
 Q(M) = E(Tr_{P3}(P₃(M)))
 Q operation leaves unchanged the initial orientation of the polygonal faces.

Q(M), examples

$Q(M) = E(Tr_{P3}(P_3(M)))$, examples

Theorem on Q(M)

- The vertex multiplication ratio in Q(M) is
 d₀ + 1 irrespective of the tiling type of M.
- Demonstration: observe that for each vertex v₀ in M results d₀ new vertices in Q (M) and the old vertices are preserved.

Thus: $v = d_0 v_0 + v_0$ $v / v_0 = (d_0 + 1) v_0 / v_0 = d_0 + 1$ Q(IV) (continued)

The transformed parameters are:

• $Q(M): V = (d_0+1)V_0$ $e = 4e_0$ $f = f_0+e_0$

 In a 4-valent map, *Q* leads to a non-regular graph (3- and 4-valent vertices).

Q(M), examples

 $Q(C_{24})$ (non-optimized)

$Q(C_{24})$ (optimized)

Schlegel version of Q(M)

Platonic and Archimedean polyhedra (derived from Tetrahedron)

		Symbol	Polyhedron	Formula	
	1	T	TT / 1 1		
		1	letrahedron		
		0	Octahedron	Me(T)	
		С	Cube (hexahedron)	Du(O) = Du(Me(T))	
		Ι	Icosahedron	Sn(T)	
	5	D	Dodecahedron	Du(I) = Du(Sn(T))	
		TT	Truncated tetrahedron	Tr(T)	
		ТО	Truncated octahedron	Tr(O) = Tr(Me(T))	
	3	TC	Truncated cube	Tr(C) = Tr(Du(Me(T)))	
(La)	4	TI	Truncated icosahedron	Tr(I) = Tr(Sn(T))	
	5	TD	Truncated dodecahedron	Tr(D) = Tr(Du(Sn(T)))	
	6	СО	Cuboctahedron	Me(C) = Me(O) = Me(Me(T))	
	7	ID	Icosidodecahedron	Me(I) = Me(D) = Me(Sn(T))	
	8	RCO	Rhombicuboctahedron	$Me(CO) = Me(Me(C)) = Du(P_4(C))$	
	9	RID	Rhombicosidodecahedron	$Me(ID) = Me(Me(I)) = Du(P_4(I))$	
	10	TCO	Truncated cuboctahedron	Tr(CO) = Tr(Me(Me(T)))	
	11	TID	Truncated icosidodecahedron	Tr(ID) = Tr(Me(Sn(T)))	
	12	SC	Snub cube	$Sn(C) = Du(P_5(C)) = Du(Op(Ca(C)))$	
	13	SD	Snub dodecahedron	$Sn(D) = Du(P_5(D)) = Du(Op(Ca(D)))$	45